Project Title	Funding	Institution	
Molecular basis of autism associated with human adenylosuccinate lyase gene defects	\$0	University of Delaware	
Visual system connectivity in a high-risk model of autism	\$0	Children's Hospital Boston	
Investigation of postnatal drug intervention's potential in rescuing the symptoms of fragile X syndrome in adult mice	\$0	Massachusetts Institute of Technology	
The functional link between DISC1 and neuroligins: Two genetic factors in the etiology of autism	\$0	Children's Memorial Hospital, Chicago	
The mechanism and significance of Evf ncRNA regulation of the DLX genes	\$2,425	University of Washington	
Regulation of 22q11 genes in embryonic and adult forebrain	\$9,806	University of North Carolina at Chapel Hill	
The role of intracellular metabotropic glutamate receptor 5 at the synapse	\$25,890	Washington University in St. Louis	
In-vivo imaging of neuronal structure and function in a reversible mouse model for autism.	\$28,000	Baylor College of Medicine	
The microRNA pathway in translational regulation of neuronal development	\$37,604	J. David Gladstone Institutes	
L-type calcium channel regulation of neuronal differentiation	\$41,380	Stanford University	
Neural circuit deficits in animal models of Rett syndrome	\$44,000	Cold Spring Harbor Laboratory	
Regulation of synapse elimination by FMRP	\$52,154	University of Texas Southwestern Medical Center	
The role of the autism-associated gene tuberous sclerosis complex 2 (TSC2) in presynaptic development	\$56,000	University of California, San Diego	
Establishing zebrafish as a model for RAI1 gene dosage	\$74,750	Virginia Commonwealth University	
Quantitative proteomic approach towards understanding and treating autism	\$75,000	Emory University	
Aberrant synaptic function caused by TSC mutation in autism	\$75,000	Columbia University	
Role of intracellular mGluR5 in fragile X syndrome and autism	\$75,000	Washington University in St. Louis	
Neuronal activity-dependent regulation of MeCP2 (supplement)	\$77,123	Harvard Medical School	
Presynaptic fragile X proteins	\$90,000	Brown University	
Developmental versus acute mechanisms mediating altered excitatory synaptic function in the fragile X syndrome mouse model	\$127,500	University of Texas Southwestern Medical Center	
MicroRNAs in synaptic plasticity and behaviors relevant to autism	\$131,220	Massachusetts General Hospital	
Fundamental mechanisms of GPR56 activation and regulation	\$134,269	Emory University	
Aberrant synaptic form and function due to TSC-mTOR-related mutation in autism spectrum disorders	\$150,000	Columbia University	
Elucidation and rescue of amygdala abnormalities in the Fmr1 mutant mouse model of fragile X syndrome	\$150,000	George Washington University	
Coordinated control of synapse development by autism-linked genes	\$150,000	University of Texas Southwestern Medical Center	
Sex differences in early brain development; Brain development in Turner syndrome	\$153,382	University of North Carolina at Chapel Hill	
Modulation of fxr1 splicing as a treatment strategy for autism in fragile X syndrome	\$158,649	Stanford University	
New approaches to local translation: SpaceSTAMP of proteins synthesized in axons	\$161,094	Dana-Farber Cancer Institute	
Activity-dependent phosphorylation of MeCP2	\$173,979	Harvard Medical School	

Project Title	Funding	Institution	
Angelman syndrome (AS)	\$208,335	University of Alabama at Birmingham	
Augmentation of the cholinergic system in fragile X syndrome: A double-blind placebo study	\$240,000	Stanford University	
Functional circuit disorders of sensory cortex in ASD and RTT	\$261,599	University of Pennsylvania	
TrkB agonist(s), a potential therapy for autism spectrum disorders	\$269,500	University of California, Los Angeles	
Cortical circuit changes and mechanisms in a mouse model of fragile X syndrome	\$290,266	University of Texas Southwestern Medical Center	
Probing a monogenic form of autism from molecules to behavior	\$312,500	Stanford University	
Regulation of 22q11 genes in embryonic and adult forebrain	\$313,000	The George Washington University	
Proteomics in drosophila to identify autism candidate substrates of UBE3A	\$316,355	University of Tennessee Health Science Center	
MeCP2 modulation of BDNF signaling: Shared mechanisms of Rett and autism	\$320,469	University of Alabama at Birmingham	
Gene silencing in fragile X syndrome	\$323,483	National Institutes of Health	
Cellular and molecular alterations in GABAergic inhibitor circuits by mutations in MeCP2	\$330,774	Cold Spring Harbor Laboratory	
The role of MeCP2 in Rett syndrome	\$337,753	University of California, Davis	
Olfactory abnormalities in the modeling of Rett syndrome	\$355,163	Johns Hopkins University	
Translation regulation in hippocampal LTP and LTD	\$372,141	New York University	
The microRNA pathway in translational regulation of neuronal development	\$376,031	University of Massachusetts Medical School	
Study of fragile X mental retardation protein in synaptic function and plasticity	\$392,087	University of Texas Southwestern Medical Center	
Allelic choice in Rett syndrome	\$394,425	Winifred Masterson Burke Medical Research Institute	
Elucidating the roles of SHANK3 and FXR in the autism interactome	\$396,509	Baylor College of Medicine	
Mouse models of human autism spectrum disorders: Gene targeting in specific brain regions	\$400,000	University of Texas Southwestern Medical Center	
Synaptic phenotype, development, and plasticity in the fragile X mouse	\$421,590	University of Illinois at Urbana Champaign	
Neuronal activity-dependent regulation of MeCP2	\$437,522	Harvard Medical School	
Cell-based genomic analysis in mouse models of Rett syndrome	\$513,667	Cold Spring Harbor Laboratory	
Probing disrupted cortico-thalamic interactions in autism spectrum disorders	\$531,624	Children's Hospital Boston	
Development of novel diagnostics for fragile X syndrome	\$532,677	JS Genetics, Inc.	
Genotype-phenotype relationships in fragile X families	\$535,019	University of California, Davis	
Genetic and developmental analyses of fragile X syndrome	\$544,592	Vanderbilt University	
BDNF and the restoration of spine plasticity with autism spectrum disorders	\$564,519	University of California, Irvine	
A longitudinal MRI study of brain development in fragile X syndrome	\$617,080	University of North Carolina at Chapel Hill	